FreiFunk Münster

Hier soll alles rund um das Thema Freifunk gesammelt werden bis es eine geeignetere Stelle gibt.

Organisation

Wir nutzen den IP Block des (ehemaligen) Piraten Funk Münster und haben uns zusätzlich einen IPv6 Block im Freifunk Wiki gesichert. Als Kontaktadresse gibt es mailto:freifunkmuenster@warpzone.ms die bisher auf Void und Sandzwerg weiterleitet.

IP-Bereich

IPv4: 10.43.0.0/16 IPv6: fd68:e2ea:a53::/48

Reservierter IP-Bereich

Dieser Bereich ist für feste IPs, Infrastruktur, Dienste usw. reserviert.

IPv4: 10.43.0.0/21 IPv6: fd68:e2ea:a53::/50

IP-Bereich Gateway 1 (VOID-DEV)

IPv4-Adresse: 10.43.0.2 IPv6-Adresse: fd68:e2ea:a53::2/48

IPv4: 10.43.8.0/21 IPv6: fd68:e2ea:a53:4000::/50

IP Bereich Gateway 2 (Warpzone)

IPv4-Adresse: 10.43.0.3 IPv6-Adresse: fd68:e2ea:a53::3/48

IPv4: 10.43.16.0/21 IPv6: fd68:e2ea:a53:8000::/50

IP Bereich Gateway 3 (Fusselkater)

IPv4-Adresse: 10.43.0.4 IPv6-Adresse: fd68:e2ea:a53::4/48

IPv4: 10.43.24.0/21 IPv6: fd68:e2ea:a53:C000::/50

Freifunk am Hawerkamp

Der Hawerkamp soll mit freien WLAN, am besten auf Basis von Freifunk ausgestattet werden. Es gibt eine Spende von 25 Cisco Access Points vom Typ AIR-AP-1131AG-E-K9

Hardware

Hersteller	Modell	WLAN	ext.Antenne?	PoE	openwrt
Cisco	AIR-AP-1131AG-E-K9	a/b/g	nein	ja	nein
TP-Link	WR841ND	b/g/n 2.4Ghz	ja	nein	ja
Ubiquity	Nanostation M5 Loco	5 GHz	nein	ja	nein

Firmware

Die Firmware wird vermutlich auf Gluon vom Freifunk Lübeck basieren. Ein Fork der Lübecker Einstellungen unter eigenem namen ist auf Github als site-ffms zu finden. Außerdem gibt es ein allgemeines Münsteraner Freifunk git unter gitolite@warpzone.ms:freifunk.git zu finden.

To-Do

- Community bei Freifunk.net als Subdomain/Wordpress Instanz anlegen lassen
- API File erstellen (Anleitung
- Gateway VM auf Warpzone Server einrichten (server.warpzone.ms -p 2223)
 - Fastd
 - VPN (openvpn)
 - DNS/DHCP (dnsmasq)
 - DHCP (isc-dhcpd)
 - ravd (dhcp ipv6)
 - alfred (teil von batman / Userspace / https://github.com/tcatm/alfred)
 - alfred-json (https://github.com/tcatm/alfred-json)
 - batman-adv (meshing) [Vorsicht: zu neue Kernel nutzen die neue batman version mit neuerem kompability level -> nicht kompatibel]
 - FFMap-Backend (Übersichtskarte https://github.com/ffnord/ffmap-backend)
 - FFMAP (Übersichtskarte https://github.com/ffnord/ffmap-d3)
 - Webserver nötig falls nicht auf bestehendem System
 - DOKU(!)
- VPN: Bei Lübecker / Berlinern nach Modalitäten für VPN anfragen: Alternativ eigenen Zugang, mit kosten verbunden (testweise genutzt: http://mullvad.net/)
- Firmware eigene VM als Zentrales Buildsystem(server.warpzone.ms:2224) + Anleitung zum selber bauen
 - Key zum signieren der Firmware: Zentral über Buildserver (alternativ: dezierte entwickler bauen selber)
- Schlüsselverwaltung der Router Anmeldung per Email (Später: Kontaktformular?)/ Verwalten im git / fastd checkt automatisch aus & konfiguriert
- Verwaltung von DNSeinträgen für .ffms

Gateway

Anleitung zum Gateway einrichten, Vorlage ist die Dokumentation des FreiFunk Lübeck

• Debian Jessie (Kernel: 3.10.x neuere Kernel Version hat neueres Batman Support level - nicht kompatibel)

• Zusätzliche Paketquellen

• deb http://repo.universe-factory.net/debian/ sid main

```
gpg --keyserver pgpkeys.mit.edu --recv-key 16EF3F64CB201D9C
gpg -a --export 16EF3F64CB201D9C | apt-key add -
```

Notwendige Pakete:

- bridge-utils (Verwaltung der Netzwerkbrücken)
- batctl (B.A.T.M.A.N. Verwaltungstools)
- iptables-persistent (Initialisierung der Firewall beim Booten)
- openvpn (VPN zu MULLVAD)
- haveged (Entropie)
- fastd (VPN zu den Nodes)
- radvd (IPv6 Router Advertisements)
- isc-dhcp-server (DHCP)
- bind9 (DNS)
- o git

• IPv6 Forwarding aktivieren

Konfigurationsdatei /etc/sysctl.d/forwarding.conf

```
# IPv4 Forwarding
net.ipv4.ip_forward=1

# IPv6 Forwarding
net.ipv6.conf.all.forwarding = 1
```

Anschließend Reboot des Servers

Batman Einrichten

- Bei der /etc/modules das modulbatman-adv hinzufügen
- Neustarten oder Modul händisch per modprobe batman-adv laden
- Überprüfen ob module geladen wurde: es existiert der pfad /sys/module/batman_adv/ und dort gibt die Datei version die Kompabilitätsversion von Batman an

Netzwerk anpassen

- Eine Netzwerkbrücke als Schnittstelle zwischen dem Mesh auf der einen Seite und dem VPN nach XYZ als exist auf der anderen Seite dazu die /etc/network/interfaces anpassen
- o Erstellen eines Bridge Interfaces das eine IP im FF-IP Block hat

```
# Netwerkbrücke für Freifunk
# - Hier läuft der Traffic von den einzelnen Routern und dem
externen VPN zusammen
```

- # Unter der hier konfigurierten IP ist der Server selber im Freifunk Netz erreichbar
- # bridge_ports none sorgt dafür, dass die brücke auch ohne

```
Interface erstellt wird
auto br0

iface br0 inet static
    address 10.43.0.3
    netmask 255.255.0.0
    bridge_ports none

iface br0 inet6 static
    address fd68:e2ea:a53::3
    netmask 48
```

• Batman Interface hinzufügen und an Bridge Interface binden

- Config anwenden indem das Netzwerk per service networking restart neustartet wird
- Table 42 die wir im Bridge Interface definiert haben muss noch mit Regeln gefüllt werden.
- TODO: Konfiguration vom 2. Gateway übernehmen, da diese Lösung nicht mit neuren Debian Versionen kompatibel ist
- Dazu erzeugen wir die /etc/iptables.up.rules und fügen

```
*filter # in wie weit ist das notwendig?
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]

COMMIT

# Regeln zum markieren eingehender Pakete
*mangle
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]
-A PREROUTING -i br0 -j MARK --set-xmark 0x1/0xfffffff
-A OUTPUT -o eth0 -p udp --dport 53 -j MARK --set-xmark 0x1/0xfffffff
-A OUTPUT -o eth0 -p tcp --dport 53 -j MARK --set-xmark 0x1/0xffffffff
```

COMMIT

ein um alle Pakete die über die Bridge reinkommen mit dem 0x1 Flag zu markieren damit sie an Table 42 geschickt werden(d.h. nicht! die default route).

• Nun wird alles von der bridge an den VPN Tunnel(der später eingerichtet wird) per nat weiter geleitetet dafür fügt man ebenfalls in der /etc/iptables.up.rules folgendes ein:

```
# Route an VPN per nat.
*nat
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]
-A POSTROUTING -o tun0 -j MASQUERADE
COMMIT
```

- Nun erzeugen wir ein Shell-Script, das beim initialisieren eines Interfaces die IpTables-Regeln läd
- Datei: /etc/network/if-pre-up.d/iptables

```
#!/bin/sh
/sbin/iptables-restore < /etc/iptables.up.rules</pre>
```

• Und machen sie ausführbar:

```
chmod +x /etc/network/if-pre-up.d/iptables
```

- Iptables laden mit iptables-restore < /etc/iptables.up.rules
- VPN Einrichten
- Unser VPN geht aktuell nach Schweden (Anbieter: https://mullvad.net/en/) dieser stellt passende openVPN Konfigurationsdateien zur Verfügung (siehe hier nach vorherigem einloggen)
- Die Konfigurationsdateien (ca.crt / crl.pem / mullvad.crt / mullvad.key / mullvad_linux.conf)
 werden nach /etc/openvpn/ kopiert und die datei mullvad_linux.conf wird ergänzt. Ganz am Ende wird

```
#custom
route-noexec
up /etc/openvpn/mullvad_up.sh
```

angefügt. Das route-noexec sorgt dafür das openvpn keine routen setzt.

 Nun wird das im vorherigen Punkt erwähnte Skript mullvad_up.sh mit folgendem Inhalt angelegt:

```
#!/bin/sh
ip route replace 0.0.0.0/1 via $5 table 42
ip route replace 128.0.0.0/1 via $5 table 42
exit 0
```

Das Skript liegt in der Routing Tabelle 42 fest das aller Verkehr der durch die Tabelle 42

geroutet wird an die IP des VPN Gateways(\$5) geroutet und setzt batman in den Server Mode. Das heißt das batman sich als Gateway versteht und das im Batman Mesh bekannt gibt.

- Openvpn wird per service openvpn start gestartet
- Fastd Einrichten
- Konfigurationsverzeichnis erstellen

```
mkdir -p /etc/fastd/vpn/peers
```

 Schlüssel für den Server erzeugen. Der Schlüssel wird in diesem Schritt nur erzeugt und auf der Kommandozeile ausgegeben. Secret und Public müssen in die Fastd-Konfiguration des Servers bzw. in die Router-Firmware übernommen werden.

```
fastd --generate-key
```

• Konfigurationsdatei /etc/fastd/vpn/fastd.conf erstellen:

```
bind 0.0.0.0:14242 interface "eth0";
interface "mesh-vpn";
user "nobody";
mode tap;
method "salsa2012+gmac";
mtu 1426; # 1426 - ipv4 header - fastd header
secret "SERVER-SECRET-KEY";
log to syslog level debug;
#folgende Zeile sorgt dafuer das jeder Peer akzeptiet wird
#on verify "true";
include peers from "/var/gateway-ffms/nodes/";
on up "
  ip link set dev $INTERFACE address de:ad:be:ef:43:0X
  ip link set dev $INTERFACE up
  ifup bat0
  batctl if add $INTERFACE
  batctl gw server
";
```

- Zum Testen kann fastd mit fastd -c /etc/fastd/vpn/fastd.conf in der Kommandozeile gestartet werden.
- Anschließend fastd mit service start fastd starten.
- IPv6 Router Advertisements Einrichten
- Jeder Gateway-Server erhält ein eigenes IPv6 Prefix für Router Anouncements
- Achtung: radvd kann maximal /64 Netze vergeben
- Der Eintrag RDNSS muss die IP-Adresse des Gateway enthalten
- Konfigurationsdatei /etc/radvd.conf

```
interface br0
{
   AdvSendAdvert on;
   IgnoreIfMissing on;
```

```
MaxRtrAdvInterval 200;

prefix fd68:e2ea:a53:zzzz::/64
{
    };

RDNSS fd68:e2ea:a53::z {
    };
};
```

- Start des Dienstes mit service radvd restart
- DHCP Server Einrichten
- Jeder Gateway-Server erhält einen Teil des IP Bereiches um Adressen zu vergeben
- Die Optionen Router und Domain-Name-Servers enthalten jeweils die IP des Servers
- Konfigurationsdatei /etc/dhcp/dhcpd.conf

```
default-lease-time 600;
max-lease-time 3600;
authoritative;
log-facility local7;
subnet 10.43.0.0 netmask 255.255.0.0 {
   range 10.43.zz.1 10.43.zz.254;
   option routers 10.43.0.x;
   option domain-name-servers 10.43.0.x;
}
```

• Zudem wird der DHCP Server noch auf das Bridge-Interface festgelegt. Hierzu wird in der Datei /etc/default/isc-dhcp-server die Ofolgende Option gesetzt:

```
# On what interfaces should the DHCP server (dhcpd) serve DHCP requests?
# Separate multiple interfaces with spaces, e.g. "eth0 eth1".
INTERFACES="br0"
```

- Test des DHCP Servers mit dhcpd -f -d
- Anschließend DHCP Server starten mit service isc-dhcp-server restart

bind Einrichten

• Konfigurationsdatei /etc/bind/named.conf.options

```
options {
    directory "/var/cache/bind";

    // If there is a firewall between you and nameservers you want
    // to talk to, you may need to fix the firewall to allow multiple
```

```
// ports to talk. See http://www.kb.cert.org/vuls/id/800113
       // If your ISP provided one or more IP addresses for stable
       // nameservers, you probably want to use them as forwarders.
       // Uncomment the following block, and insert the addresses replacing
       // the all-0's placeholder.
       // forwarders {
               0.0.0.0;
       //
       // };
       // If BIND logs error messages about the root key being expired,
       // you will need to update your keys. See
https://www.isc.org/bind-keys
dnssec-validation auto;
       recursion yes;
       allow-recursion { localnets; localhost; };
       auth-nxdomain no; # conform to RFC1035
       listen-on-v6 { any; };
};
logging {
 category "default" { "debug"; };
 category "general" { "debug"; };
 category "database" { "debug"; };
 category "security" { "debug"; };
 category "config" { "debug"; };
 category "resolver" { "debug"; };
 category "xfer-in" { "debug"; };
 category "xfer-out" { "debug"; };
 category "notify" { "debug"; };
 category "client" { "debug"; };
 category "unmatched" { "debug"; };
 category "network" { "debug"; };
 category "update" { "debug"; };
 category "queries" { "debug"; };
 category "dispatch" { "debug"; };
 category "dnssec" { "debug"; };
 category "lame-servers" { "debug"; };
 channel "debug" {
   file "/tmp/nameddbg" versions 2 size 50m;
   print-time yes;
   print-category yes;
 };
};
```

Konfigurationsdatei /etc/bind/named.conf.local

- Dienst starten mit service bind9 restart
- Konfigurations-Git clonen
- cd /var
- git clone https://github.com/FreiFunkMuenster/gateway-ffms
- Gateway-Script
 - Damit der Gateway seine Funktion aufnimmt und über batman als Gateway anerkannt wird (erst dann funktioniert Routing, DHCP, usw.) muss das Kommando batctl gw server ausgeführtwerden.
 - Hierfür sollte idealerweise ein Gateway-Überwachungsscript erstellt werden.

NanoStation Loco M5

Die Original Firmware für die NanoStation Loco M5 findet sich bei Ubiquiti das Updaten funktioniert über TFTP wie im Openwrt Wiki beschrieben. Es Funktionierte nur mit Firmware Version "XM-v5.5.8.build20991.bin" und nicht mit der Version 5.5.9. (Platform: airMAX ISP Solutions / Model: NanoStation M5)

API File

9/10

Das API File liegt im /var/www/html/ des Buildservices ssh root@warpzone.ms -p 2224 bzw scp -P 2224 FreifunkMuenster-api.json root@warpzone.ms:/var/www/html/ dadurch wird es automatisch unter https://www.warpzone.ms/freifunk/ erreichbar. Die Datei heißt FreifunkMuenster-api.json der gesamte Pfad zur API Datei lautet also https://www.warpzone.ms/freifunk/FreifunkMuenster-api.json

Knotenanzahl Automatisch Updaten lassen

TODO: http://luebeck.freifunk.net/wiki/Netzwerk:Skripte

Printed on 02.11.2025

From:

http://wiki.warpzone.ms/ - warpzone

Permanent link:

http://wiki.warpzone.ms/infrastruktur:freifunkmuenster?rev=1405462576

Last update: **01.03.2017**

